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Abstract

We have considered the problem of dynamic stress redistribution in flbrous
materials due to the failure of a single element. Our model consists of a number of
aligned adjacent chains of harmonically coupled masses. Neighboring masses on ad-
jacent chains are also coupled by shear-carrying springs. Depending upon the scope and
assignment of parameters, the model might apply to aligned polymer chains in a crystal
or amorphous environment, to fllaments in a fiber, or to flbrous composite materials.
At time ¢ = 0, an intra~chain spring is broken and the motion of the masses in the
local environment is followed by molecular dynamics. The dynamic loads carried by
bonds in chains neighboring the defect oscillate with decreasing amplitude, ultimately
reaching asymptotic values that can also be calculated exactly by harmonic analysis.
We find that the maximum of the excess load carried by a spring in a chain adjacent to
a defect is about two times the asymptotic value for two-dimensional arrays of chains
and somewhat larger for three-dimensional arrayi. The dependence of these quantities
on the magnitude of the shear-carrying spring constant is explored. These results have
implications for a number of theoretical approaches to fiber and composlte strength
which use load-sharing models based on asymptotic values.






Introduction -

The study of stress concentration around defects and its relationship to failure-
in materials has been an area of interest to material scientists for some time. In the
area of polymeric maﬁaials a numbler of workers have addressed the problem from
varying perspectives. One group, led by-Phoenix,! has explored a “chain of bundles”
model which focuses on the statistical nature of material failure and the consequences
of various load-sharing rules. Others; such as Christénsen;. have examined continuum
‘models of crack growth in polymeric materials. Gotlib id, co-workers®—® have ex-
plored. a more molecular model in which they have e ined stress concentration and
failure in a solid polymeric matei'ial, based on the harmonic Newell-Rosenstock network
model. A number of workers Liave also approached the pr;oble'm from a kinetic point
of view.”™™° In all these studies, although they may ma.ke% predictions about material
lifetimes, there is an underlying assumption that between: successive events the local

" environment completely relaxes. Speciﬂcafli, stress concentrations are calculated or
dealt with as st_;atic, time-inae_pendent quantities. '

Studies of the actual dynamics of stress flows in'lpolymeric materials due to
the formation of 8 defect have been rare, though a few workers have attempted
to incorporate these effects in an approximate way in studies of fibrous compoiite
strength.10—12 ' ' :

The work most closely related to the study presgnted' here is that of H 13

published as a NASA Technical Note more than twenty years ago, in which he analyzes
the stress redistribution due to fllament failure:in a sheet of parallel fllaments which
carry normal loads and are embedded in a matrix which carries only shear. For
this quasi-continuum' model he is-able to calculate the dynamic response- of fllaments
adjacent to a newly formed defect and obtain the magnitude of the dynamic overstress,
the stress in excess of that which is present when relaxation takes place.

In our work we have studied the similar discrete broblem where the fillaments
have been replaced by chains of harmonically coupled masses and the shear acts only
between mass points on neighboring chains. This discrete model is similar in some
respects to that used by Gotlib and coworkers. Our motivation in studying a:discrete
system is to reduce the lower end of the scale of applicability of the model to the
molecular level. Our molecular dynamics techniques also allow us to easily investigate
the three-dimensional problem not treated by Hedgepeth. The model will be described -



more fully in the next section and a comparison of our results and those of Hedgepeth-
will be covered in the discussion, along with other pertinent results.

Model .

Our model, schematlcally reprelented in- Flgure 1, consists of a number of aligned
adjacent chains of harmomcally coupled masses. Nelghbormg masses on adjacent
chains are also coupled by shear carrying springs. Although particle motion is purely
one-dimensional along the aligned direction, we can create two-dimensional systems
such as the one depicted in Fiigure 1 or three-dimensional arrangements of chajns where
each chain has six neighboring chains packed in:a hexagonal array. The total energy,'

E7r, of the system can be expressed in terms of the spring constants A and C of the

intra~chain and shear carrying springs; and the positions of the particles, X| ;, where
¢ indicates the position of the particle on the Jth chain as
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for a system with m chains of n masses each. o is the unstressed bond length, set ._

equal to unity in this work. The shear carrying spring constants C;s ;; are non-gero
only if chains j' and j are adjacent. It should be emphasized at this point that the
springs in the model need not be thought of as representing individual chemical bonds,

but rather they model interactions aﬁpropriate to the scale being considered. This
interpretation is particularly important for the shear-carrying springs which represent

only the net resistance to relative displacement of two neighboring masses. The source

of this resistance can vary from chemical cross—links to van der Waals interactions,
and in the model these interactions are treated in a “mean fleld” manner with the
ma.gmtude governed by the value of the force constant.

The equations of motion of the mn masses are solved numerically by first calculat-
ing the forces on each particle at time ¢ - '

(1)
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and then using the simple difference equation
' At
Xyt + Af) = X;,0 () + F s ()AL + V(¢ — —-)At

where .
Al '

is the velocity of the particle. Particle masses have been set to unity. In the work

. At
Vialt— T) =

presented here all the A-type bonds are ldtlca.l., as are all the C-type bonds so the '

subscrlpts are dropped in what follows.

‘In order to study dy'na.mlc overstresses ‘adjacent. to a newly formed defect we
initially strain the perfect system by 10% and then the § =1andn particles in each
chain are held Stationa.ry. Since all bonds' are harmonic with linear force laws the
quantities we will examine are independent of the degree of strain. At time ¢ = 0 we
break(or zero) a single A bond between particles /2 and n/2 4 1 in any chain. In

setting up the array of m chains, periodic boundary. conditions are used perpendicular _

to the aligned direction so that the initial environment of all chains is identical. The
motivation and use of such boundary conditions in physical systems has been discussed

by Brostow.l* After breaking the A bond the motion of the system, and particularly
the neighboring particles is followed by repeated application of Eq. (3) for sufficiently

" small At so that energy is conserved. This procedure was followed for various values
of C with A set to unity to determine the dependence of the dynamics of stress
redistribution on C. For the work reported here At = 0.1. To convert to “real” time
for a system of particles of mass m connected by force constants k, one unit of time, ¢,
would correspond to \/m/k in the time units appropriate to k. Using the appropriate
constants for a polyethylene cha.ih, one unit. of time wqilld be about 5 femtoseconds.

We also note that for large enough systems fixing the strain on the system is
entirely equivalent to applying a constant stress oi; the end --pai;tiélei. - This is true
since the effects we are examining are local and thus do not propagate to the borders.
Studies of varying sized systems has verifled this fact. The specific data presented
here are for two-dimensional systems which contain 40 chains of 80 pa.rtlcles each and
three-dimensional systems with 81 chains of 50 particles each.

(3)
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Results

Our primary focus is on the bonds directly adjacent to the one broken. The length
of such bonds as a function of the time, £, is indicated by the solid lines in Figure 2
for C = .50 in two and three dimensions. The dotted lines show the “bond length”
of the broken bond. Because the springs are Hookean the quantity () — Ip is directly

proportional to the bond stress. Note the oscillatory behavior of 1_;1'1e bond length at -

short time. At longer time the amplitudé fades to zero as the energy is dispersed
throughout the system. This asymptotic value can. be calculated dn'ectly by solvmg
the m(n — 2) linear equatxons(z =1n pa.rtncles fixed)

Fii =0
for the system with a broken bond. We quantify the overstress o, (t) as

1) — 1[0
0= e =ty

where I(¢) is the length of the bond at time . Note that z(q) is not the equilibrium value
lo but rather the bond length immediately after imposition of the strain, but before
the system has responded to the broken bond, and is thus related to the unposed load

on all bonds before failure. o, () thus measures the time-dependent excess load a
bond near a defect carries in comparison to the load it will have when the system
is completely relaxed at { = oco. In Table 1 we list the values of o, () at the first
maximum for various values of C for the two and three dimensional systems. In the
limit that C' becomes very small the neighboring strand would be linaﬂected,'however

the ratio o, (t) becomes undefined(0/0). The decrease shown in Table 1 suggests that
the value approaches unity. For very large C one would expect Oes (t) to also approach
unity since adjacent masses would become locked together. We also list in Table 1 the

maximum values of the dynamic response factor, n, defined by Hedgepeth as '

0= fo i

This is simply a ratio of displacements or stresses and differs froﬁ: O.q (t) by subtracting
the equilibrium length, [y, rather than theé initial strained length, [(0). It should be
reemphasized that for a system of harmonic bonds, such as we have, the magnitude of

both o, (t) and n(t) are independent of. the initial strain. It should also be pointed out

(5)
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that, because of the harmonic system, the values hsted in Table 1 depend only on the
ratio of C to A.

-Dlleunlqn

Several features of the data presented in Figure 2 and Table 1 are worth noting.
First, the dimensionality of the system has s significant quantitative effect on the actual
motions, though qualitatively the two- and three-dimensional systems are similar. Note
that in three dimensions the magnitude of the bond-length deflection is significantly
reduced due to the restoring forces of the extra neighboring chains and that the first
maximum occurs sooner. However the values of o, (t) at the first maxima are somewhat
larger in three dimensions than in two dimensions due to the fact that the extra
‘restraining forces in three dimensions are more effective at reducing {(co) — I(0) than
I(t) — {(0). Note the values of both o.; and n plateau at intermediate values of C. In
any physical system we would probably expect C to be some fraction of A. Thus the
dynamic stress felt by a bond adjacent to a newly formed defect, opposed to one distant
from it, will be roughly 1.8 times greater in two dimensions and 2.5 times greater in
three dimensions. The overstress effects also extend fo neighbors more distant from
the defect. The ratio O (t) at its maximum remains about the same, however the
magnitude of the transferred stresses is much less and thus of little importance.

Our results agree qualitatively with those of Hedgepeth for his quasi-continuum
two-dimensional model. He also notes oscillating behavior of the stress in neighboring
filaments following the formation of a defect. Hedgepeth’s calculated » for the two-
dimensional system is 1.15 for unit shear constant which is. to be compared with a
value of 1.22 from our work. The small differences are due to the differences between
a continuum and discrete model.

Some exploratory work was performed with more realistic spring potentials.
Specifically, the longitudinal Hookean springs were replaced with Morse springs where
the energy between adjacent masses ¢ and ¢ 4 1 is given by

Ef:‘_'_l —D(exp(—2v (X’H"l —X —lo)) —2exp( V (X{+1 —Xg —lo)))

(8)



The shear carrying springs were replaced by an mter-particle potentml between ad-
jacent masses § and 5 on neighboring chains as

—X
E? ——c(;;) co.[”f‘x‘lo ’)] if | X, — x,|<J§°

Xo

. 'R

In both of these cases the terms have been written so that expansion to quadratic terms
will give the form of Eq. (1). The parameter D, which controls the well depth, was
set to .0541, which models accurately the carbon-carbon bond potential in the units
at hand. Qualitatively the results are the same for this system as for the quadratic
system, the quantitative agreement being better at smaller strain values as one would
expect. The general pattern of an initial overstress as shown in Figure 2 remaih,
though the details of the relaxation are somewhat different. Since it is not possible
to obtain the values of [(oo) analytically- for the revised system it is difficult to get
accurate values of 0., and 9. Qualitatively, however, the simulations show that the
neighboring bond is strained more than in the harmonic case due to the softness of
the Morse potential on extension. Thus, the harmonic behavior studied in this pa.per-
represents a lower bound on the magnitude of the effect.

E° =0 if | X —X; |> =

As noted in the introduction, one area of importance of the ideas and results
presented here has to do with failure theory. Use of the static stress distribution values
will lead to an underestimation of the rate of fa.ilul_'e. If the applied stress on a bond is
low compared to the critical stress for failure of that bond, the effect may be of small
importance since it is only a very short time eﬂeet(the order of a molecular vibration if
one views the model on a molecular scale) and the probability of failure of the element
is low. However, as the apphed stress approaches the critical stress, the overstress will
cause the local dynamic applied stress to the bond or fiber to exceed the critical value
for failure, resulting in “premature” failure. Thus we conclude that it is primarily
during rapid, catastrophic failure that these effects will be most important.
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Table 1. The va_lues of the dynamic bverstresies, ,o.; , and djnimic response factors,
7, are given at their maxima for the two-dimensional(2D) and three-dimensional(3D)
systems as a function of the shear-carrying force constant, C. '

c o oX R i Lo

0.10 161 .178 L15 107
020 170 217 117 110
030 158 237 114 111
040 1.68 247 116 . Ll11
0.50 - 1.78 2.52° 118 1.1l
0.60 1.86 254 1190 L11
070 1.91- ‘255 120 110
0.80 195 . 254 121 110
090 199 -252 121 110
100 201 250 122 . 1.09
120 2.04 2.46. 122 1.08
140 2.05 241 - 122 108
160 205 237 121 107
1.80 2.05. 231 121 LO7
2.00 204 227 120 106
3.00 196 205 117 1.04
500 178 176 112 103
1000 1.56 163 107 102
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Figure Captions _

Figure 1. __The mode] under sttidy. Motion of the masses is restricted to the horizontal
direction. The masses in adjacent horizontal chains are linked by shear-carrying

springs.

Figure 2. Bond lengths of the broken bond(dotted) and adjacent bond(solid) are given
a3 a function of time for two dimensional (2-D) and three dimensional (3-D) systems
for C = .5. The bond is broken at ¢ = 0 and the initial strain is 10%.
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